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Predicting clinical response to anticancer drugs
using an ex vivo platform that captures tumour
heterogeneity
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Predicting clinical response to anticancer drugs remains a major challenge in cancer

treatment. Emerging reports indicate that the tumour microenvironment and heterogeneity

can limit the predictive power of current biomarker-guided strategies for chemotherapy. Here

we report the engineering of personalized tumour ecosystems that contextually conserve the

tumour heterogeneity, and phenocopy the tumour microenvironment using tumour explants

maintained in defined tumour grade-matched matrix support and autologous patient serum.

The functional response of tumour ecosystems, engineered from 109 patients, to anticancer

drugs, together with the corresponding clinical outcomes, is used to train a machine learning

algorithm; the learned model is then applied to predict the clinical response in an independent

validation group of 55 patients, where we achieve 100% sensitivity in predictions

while keeping specificity in a desired high range. The tumour ecosystem and algorithm,

together termed the CANScript technology, can emerge as a powerful platform for enabling

personalized medicine.
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T
he ability to predict patient tumour response to cytotoxic
or target defined therapeutic agents remains a holy grail.
While molecular and genetic profiling is driving the

evolution of subtype-specific personalized therapy1,2, the
presence of a biomarker often does not translate into a
successful clinical outcome3–5. For example, epidermal growth
factor receptor (EGFR) inhibitors, cetuximab and panitumumab,
are approved for metastatic colorectal carcinoma with wild-type
KRAS, but provide clinical benefit in only 10–20% of selected
patients1,6,7. A technology that can identify drug sensitivity and
predict clinical benefit can significantly advance the clinical
management of cancer.

Emerging evidence implicates intratumoral heterogeneity, both
hierarchical and stochastic, in the variability of response to
chemotherapy, which is not captured by the existing cancer cell
biomarker-based approaches. Genetic and epigenetic distinctions
within clonal populations could critically determine whether a
particular drug combination will benefit a patient or result in
resistance8–13. In addition, the contribution of the tumour
microenvironment to these phenotypes is increasingly being
appreciated9,10,14,15. Indeed, the spatial distribution of cancer and
stromal cells within the tumour microenvironment can affect how
they interact with each other and their microenvironment, which
in turn can impact proliferation, differentiation, morphology and
a range of cellular functions16–18. We rationalized that to predict
the clinical outcome of chemotherapy with high accuracy, it is
therefore important to conserve this clinical ‘global’ heterogeneity
with high fidelity in terms of cancer and stromal cells, tumour
microenvironment and architecture. Unfortunately, current gold-
standard in vitro and ex vivo preclinical approaches that employ
cell lines and spheroids3,12,19 or ex vivo organotypic tumour
models are all limited by their inability to capture the full
biological approximation of the native tumour, resulting in poor
mapping to clinical outcomes19–22.

To create a clinically relevant predictive model, here we
engineered an ex vivo tumour ecosystem, where thin tumour
sections with conserved cellular and microenvironmental hetero-
geneity and architecture were cultured in tissue culture wells
coated with grade-matched tumour matrix support in the
presence of autologous serum (AS) containing endogenous
ligands. The integration of the tumour ecosystems with a
novel machine learning algorithm formed the CANScript
platform, which reliably predicted the therapeutic efficacy
of targeted and cytotoxic drugs in patients with head and
neck squamous cell carcinoma (HNSCC) and colorectal cancer
(CRC). The robustness of this platform in predicting clinical
response could potentially be useful for personalizing cancer
treatment.

Results
Role of matched tumour matrix proteins in CANScript platform.
We depict the schematic for the development and validation of
the CANScript platform in Fig. 1. A detailed patient demography
and tumour subtypes used in this study are provided in
Supplementary Table 1. As a first step towards mimicking the
patient tumour ecosystem, we studied the contribution of cancer
and grade-specific human tumour-stromal matrix proteins
(TMPs) in preserving tumour morphology of HNSCC and CRC
explants in an ex vivo setting. Indeed, three-dimensional (3D)
matrix support is emerging as a critical factor that dynamically
determines the fate of tumours in terms of integrity, survival,
metastasis and response to chemotherapy23–25. We isolated and
characterized the matrix components from clinical HNSCC
and CRC tumours using processes described in detail in
Supplementary Methods and Supplementary Fig. 1. The overall

relative abundance of different TMP in tumour (both HNSCC
and CRC) biopsies was analysed by liquid chromatography–mass
spectrometry (LCMS/MS; Fig. 2a). Interestingly, a systematic
analysis of the major TMP components not only revealed distinct
compositions between the two tumour types and between high-
and low-grade tumours of the same type (Fig. 2b,c), but also
heterogeneity within the patient population as demonstrated
using heat maps (Supplementary Figs 2a,d and 3a,d). Venn
diagrams reveal unique matrix proteins that were conserved
across the patient cohort within each tumour type and grade
(Supplementary Figs 2b,e and 3b,e), which together with their
abundance (median) (Supplementary Figs 2c,f and 3c,f) formed
the basis for selection of the proteins to create the tumour- and
grade-matched cocktails (listed in Supplementary Figs 2,3). We
coated tissue culture microwells with these defined cancer- and
grade-specific TMPs, which was confirmed using scanning
electron microscopy and matrix proteins-specific immuno-
fluorescence (Fig. 2d). Thin section tumour explants were then
cultured in these TMP-coated wells. As compared with uncoated
control, type- and grade-matched TMP showed a dose-dependent
improvement in the maintenance of tissue morphology,
proliferation and cell viability of the tumour explants (Fig. 2e,f).
Furthermore, scanning electron microscopy analysis of native
tumour extracellular matrix structure post culture indicated that
integrity was better preserved in tumour explant tissues that were
provided with TMP support (Fig. 2g). To further understand the
role of grade-matched TMP cocktail, we did a cross-comparison
analysis where high- and low-grade tumours were cultured in
matched and unmatched TMP-coated plates. As shown in Fig. 2h,
explants cultured on matched TMPs better retained native (T0)
proliferation (Ki-67) state compared with the corresponding
unmatched counterparts and no matrix controls. As expected,
high-grade tumours did exhibit a greater capacity to preserve
the proliferation profile even in low-grade TMP. Low-grade
tumours in high-grade matrix performed poorly (Fig. 2h and
Supplementary Fig. 4a). Next we compared the effects of different
commercially available matrix proteins with TMP coating in
maintaining the proliferation, viability and signalling activation of
the explants to the native state (T0 baseline). As shown in Fig. 2i–j
and Supplementary Fig. 4b, explants cultured in non-coated wells
lost tumour architecture and exhibited decreased viability,
proliferation and activation of oncogenic pathways compared
with T0 baseline. While gelatin coating was no better than
non-coated condition, collagen partially supported tumour
proliferation, tumour area and phosphorylation of ERK1/2 but
not cell viability. Interestingly, Matrigel, a widely used murine
tumour-derived matrix, resulted in increased cell viability,
tumour area and phospho-ERK but not in proliferation (Fig. 2j
and Supplementary Fig. 4b). In contrast, explants cultured
in matched TMPs retained tumour morphology, viability,
proliferation and phospho-ERK1/2 status similar to the T0

baseline parameters. This observation is consistent with recent
reports that highlight context-dependent stromal-epithelial
interaction as a critical requirement of tumour cell survival and
maintenance10.

Autologous ligands maintain the signalling and phenotypes.
A heterogenous tumour microenvironment represents a diverse
network of oncogenic signalling pathways, which are activated in
both ligand-dependent and -independent manner and can spa-
tiotemporally and dynamically cross-talk26–30. Indeed, a reverse
phase phosphoprotein array (RPPA)-based profiling of key
receptor tyrosine kinases (RTKs) and their nodal proteins in
the tumour biopsies revealed a heterogeneity in the baseline
activation levels of these receptors and downstream signals
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(Fig. 3a and Supplementary Fig. 5a,b). This led us to hypothesize
that a balanced induction of these receptors using their original
ligands in an individualized setting is critical to mimic the
baseline networks of the parent tumour ex vivo.

Autocrine–paracrine loops of growth factors enriched in
patient sera contribute to the activation of signalling networks
and survival cascades in cancer cells10,31,32. As the second step
towards fabricating the CANScript platform, we therefore studied
the functional attributes of AS. As shown in Fig. 3b a number of
growth factors (represented by EGF, hepatocyte growth factor
(HGF), vascular endothelial growth factor (VEGF) and
macrophage colony-stimulating factor (MCSF)) were found to
be within clinically detectable ranges in patient sera. The
variability in the levels of these growth factors that exists
between individuals further underlined the importance of using
the complete AS for a balanced induction of signal transduction
pathways as opposed to an artificial combination of growth
factors. We first performed a dose–response analysis, where
increasing concentrations of AS was used in combination with a
reducing percentage of fetal bovine serum (FBS) in the culture for
72 h. A concentration dependent increase in cell proliferation in
the explants was observed while supplementing the system with
AS that attained the peak at 2% (Fig. 3c). Concomitantly, 2% AS
also mimicked the native state (morphology and proliferation) of
tumours at T0 baseline (Fig. 3d). The decline above this
concentration is consistent with earlier observations with
growth factor ligands and possibly arises due to the
downregulation of targets33. In addition, 2% AS (þ 8% FBS)
resulted in significant increase in ATP utilization and cell
proliferation compared with 10% FBS or recombinant EGF
alone (Fig. 3e,f). Furthermore, compared with exogenous EGF
controls, the addition of AS significantly preserved the major
signalling networks as measured by phosphorylation of EGFR,
Met and downstream target, ERK1/2. It is interesting to note that

1 ngml� 1 concentration of EGF predominantly activates EGFR
pathway alone. In contrast, 2% AS showed the capacity to activate
both EGFR and HGFR/Met pathways along with downstream
ERK1/2 comparable to the T0 baseline, consistent with the
balanced effect of patient-derived ligands in its natural milieu.
The enhanced response to AS was reduced to T72 h baseline (that
is, no AS control) using neutralizing antibodies to EGFR, which is
consistent with the aberrant activation of EGFR pathway in a
majority of HNSCC and other cancers of epithelial origin27,29.
However, the neutralizing antibody failed to fully abrogate the
proliferation below the level of T72 h control, suggesting that
despite the predominant role of EGFR in some individual
tumours additional constitutive mechanisms exist that might
contribute to minimal maintenance of these tumours (Fig. 3g–i).
It is obvious that the survival of tumour is not a consequence of
dependency on single pathway lineage or network.

To further validate the contribution of autologous sera in
personalizing the explant culture, we compared the individual
effects of heterologous/allogenic sera (HS) obtained from
treatment naı̈ve patients (age, sex and cancer-type matched)
with AS and recombinant EGF. As shown in Fig. 3j,k, while
EGF resulted in the maximum effect in inducing EGFR
phosphorylation, 2% AS efficiently maintained both EGFR and
Met phosphorylation. In contrast, 2% HS, while exerting a greater
effect than no ligand (T72 h) control, was significantly inferior to
AS. Similar pattern was observed for Ki-67 (Supplementary
Fig. 6a). Taken together, these results indicate that presenting the
entire repertoire of growth-promoting ligands by using AS is
critical to fully capture the parental activation status of important
receptors in the personalized explant setting. Indeed, RPPA array-
based analysis of the parent HNSCC tumours (T0 baseline)
showed that a bulk of the proteins in RTK cascades that were
upregulated are largely conserved in the tumour explants cultured
in 2% AS (Fig. 3l and Supplementary Fig. 6b).

Machine learning and predictive scoring

CANScript platform and assays
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Figure 1 | Schematic showing the development and validation of the CANScript technology. Four critical modules were integrated in generating and

validating the CANScript platform. The first module involved collecting tumour core or surgical biopsy with tumour staging and pathology information

besides clinical/treatment history. In the second module, tumour biopsy was rapidly processed into thin explants. Tumour biopsies were also used to

generate either in vivo implants in mice, or processed for isolation and analysis of tumour matrix, which was used to develop the TMP cocktail. The explants

were cultured in tumour- and grade-matched TMP and AS and incubated with selected drug regimens. While multiple drug regimens can be used, the one

used by the oncologist for the patient was always included in the tumour explant culture. Functional outcome of treatment in terms of cell viability,

pathological and morphological analysis, cell proliferation and cell death was quantified. In module three, these quantitative scores from the explants were

aggregated using a machine learning algorithm to assign a final score, which helped rank the outcomes as CR,PR or NR. The learning algorithm was trained

on data from 109 patients. In the final module, these predictions were tested against clinical outcomes from 55 new patients to validate the approach.

D1, D2, D3 and D4 indicate different drug regimens.
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Reconstructing a tumour ecosystem. As the final step towards
constructing the CANScript tumour ecosystem, both conditions
(that is, TMP and AS) were contextually integrated in the
explant system. Immunohistochemistry (IHC) labelling was
used to evaluate a number of static and dynamic phenotypic
markers associated with functional heterogeneity of tumour
microenvironment. Profiling for CD68 (marker for immune

component)34, VEGFR (marker for angiogenesis), CD34 (marker
for angiogenesis and progenitors)35, E-Cadherin and Vimentin
(markers for epithelial mesenchymal transition (EMT)) revealed
that the combination of AS and TMP conserved the parental (T0)
phenotypes better than T72 h control or EGFþTMP(Fig. 4a,b).
Similar effects of AS and TMP were also observed for EMT-
specific markers (Fig. 4c). Furthermore, cell viability, proliferation
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Figure 2 | TMPs are critical for conserving primary tumour characteristics in explants. (a) The average composition and abundance range of key

components of TMP. Abundance range was measured based on area under the peak using Pearson’s correlation for clustering of protein features. The line

within each notch box represents the median, and the lower and upper boundaries of the box indicate first and third quartiles, respectively (n¼ 24), of

some of the key TMPs isolated from (b) HNSCC (n¼ 12) and (c) CRC tumours (n¼ 12) (d) scanning electron microscopy (SEM) images of plastic surface

precoated with Collagen-I (top) or TMP cocktails (bottom). Scale bars, 1 mm. Adherence of the component proteins to the surface and their ability to form

networks is shown following immunofluorescence (IF) staining using human Collagen-I antibody. Adherence was measured by detecting specific

fluorescence signal in coated area contrasting to uncoated area of the same surface. Scale bars, 200mm (right). (e) HNSCC explants were cultured for 72 h

in plates coated with different concentrations of TMP as indicated. Maintenance of overall intratumoral heterogeneity and integrity was determined by

hematoxylin and eosin staining (H&E; top) and tumour cell proliferation by Ki-67 staining (bottom). Scale bar, 100mm. (f) Tumours from HNSCC patients

were sliced. Explants were cultured for 72 h in plates coated with different concentrations of TMP as indicated. Percent tumour area, cell viability and

Ki-67þ cells per field was measured (mean±s.d.). *Pr0.05 compared with uncoated control using paired t-test. Data represent one of the five

independent experiments performed in triplicates. (g) HNSCC tumour slices cultured for 72 h with or without TMP were subjected to extraction of native

extracellular matrix (ECM). Preservation of ECM 72h post culture was determined by IF staining of extracted ECM parallel to SEM imaging (inset).

(h) HNSCC tumours of high and low grades were sectioned cultured for 72 h in plates coated with matched and unmatched TMP (high and low grade)

Scatter plot indicates the effects of grade-matched and unmatched TMP on retaining the proliferation profile. Percent Ki–67–positive cells from HNSCC

explants were calculated at the end of 72 h based on T0 score. **Po0.0002, #Po0.05 for the high-grade tumours cultured in presence of low-grade

TMP by paired Student’s t-test. NS, not significant (n¼ 12). (i) Representative images show the effects of CRC-specific TMP and other coating materials

on pERK status (top), proliferation (middle) and morphology (bottom) of tumour explants. Scale bar, 100 mm. (j) Quantitative analysis of TMP on

proliferation, tumour area and pERK status in CRC explants. **P o0.01 compared with T72 control (analysis of variance, n¼ 8).
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index, and metabolic state of the explants in the CANScript
tumour ecosystem was similar to native (parent/T0 baseline)
tumour and significantly enhanced compared with control
explants cultured without AS and TMP, or with either AS or
TMP alone. The pattern of augmentation of Ki-67 upon
ASþTMP was found to be consistent and significant
(Fig. 4d,e). Together these results indicate that the native
tumour-stromal micro-architecture and phenotypic features
were largely conserved in the CANScript tumour ecosystem
compared with the culture conditions with only TMP or AS or

EGF-supplemented TMP. Next, we used microarray profiling to
compare the transcriptome of primary tumours at baseline (T0)
and serially sectioned tumour explants cultured under different
conditions. Indeed, a high degree of conserved global
transcriptomic profile consistent with the primary tumour was
observed only in the case of the CANScript platform that
integrated both TMP and AS, while supplementing the explant
cultures with either AS or TMP(þ EGF) alone resulted in distinct
transcriptomic signatures (Fig. 4f,g). Concurrent to the
phenotypic expression as shown in Fig. 4a,b, conservation of
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line represents median and error bars indicate the interquartile range. (c) The dose-dependent effect of AS in HNSCC was measured by Ki-67. *Po0.001

by one way analysis of variance (ANOVA; n¼9) compared with no AS control. (d) Tumour slices cultured in the presence or absence of autologous ligands

for 72 h and stained with hematoxylin and eosin stain (top) and Ki-67 (bottom). Scale bar, 50mm. (e) Box plot shows ATP utilization (*Po0.05 by t-test,

n¼ 6) at 72 h in the presence of AS. (f) Box plot shows fold increase in Ki-67-positive cells cultured with AS and EGF (*Po0.05 and **Po0.01, t-test,

n¼ 8). (g) Impact of AS on the balanced activation of different signalling receptors close to T0 baseline. Tumour explants were treated with 2% AS,

1 ngml� 1 per h EGF or 8% FBSþ 2% BSA (BSA Control) for 72 h. Tumours were stained for pEGFR (top), pMet (middle) and pERK1/2 (bottom). Scale bar,

100mm. (h) Graph shows quantification of effects of different treatments on the proliferation and phosphorylated EGFR status in the explants. HNSCC

samples were cultured in the presence of 2% AS or EGF up to 6 h for pEGFR and 72 h for detecting proliferation. Appropriate controls (no serum, no

antibody and antibody alone) were included. Anti-EGF was added 1 h before stimulation. The effect was assessed by pEGFR and Ki-67 staining. All data

(n¼8) are represented as mean±s.d. **Po0.01 by t-test. (i) Box plot shows percent pERK positivity (n¼ 8) **Po0.01 (by analysis of variance).

Horizontal line represents median and error bars indicate the interquartile range. Graphs shows comparison of the capacity of AS, HS and EGF in activating

(j) EGFR (*Po0.02 by t-test, n¼ 9) and (k) in maintaining phospho-Met expression (*Po0.0001 by t-test, n¼ 7). (l) Global RTK profiles of cultured

HNSCC tumour explants and corresponding T0 baseline was compared following stimulation with 2% AS for 72 h. Total cell lysates were applied to array

slides precoated with different antibodies against RTK pathways. Signal was detected by chemiluminiscence method.
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stromal gene expression signatures, specifically linked to tumour-
associated macrophages and angiogenesis were also observed
(Fig. 4g). To further confirm these results, a selected panel of
genes relevant to TAM (that is, PDGFA, DUSP1 and STAT3) and
angiogenesis (that is, FABP4 and ITSN1) signatures
(Supplementary Table 2) was analysed under different
conditions using qRT–PCR. As shown in Fig. 4i, the expression
of these markers were conserved only under ASþTMP condition

but not when either is absent. In addition, expression of tumour-
associated key cytokine/chemokines, such as interleukin-6,
interleukin- 8 and CXCR-4, matrix degrading enzyme matrix
metallopeptidase 9 (MMP-9) and cancer stem cell markers like
CD44 and ALDH1 observed in the parent HNSCC tumours were
also preserved in the CANScript tumour ecosystem
(Supplementary Fig. 7a–c). It is important to note that unlike
common synthetic organotypic inserts, the CANScript platform
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Figure 4 | Integration of both TMP and AS in the CANScripts maintains the tumour ecosystem. (a) Representative IHC images show the effect of AS

and matchedTMP on the phenotypic stability of tumour explants 72 h post culture. Tumour sections were stained for CD68, VEGFR and CD34. Scale bar,

100mm. (b) Quantitative IHC based box plot indicates CD68, VEGFR and CD34-positive cells in the explants maintained under different conditions.

Horizontal line represents median and error bars indicate the interquartile range. *Po0.05 and **Po0.001, respectively (paired t-test, n¼8).

(c) Representative IHC images show EMTrelated markers of tumour microenvironment in the CANScript explants. Scale bar, 100mm. (d) Graph shows the

combined effects of AS and TMP on the functional integrity of the explants. Tumour sections were cultured for 72 h. Number of Ki-67-positive cells

were counted and plotted along with percent viability and ATP utilization per section in triplicates (mean±s.d.). **Po 0.01 (by analysis of variance).

(e) The combined effects of AS and TMP on the functional integrity of explants are represented as scatter plot (n¼ 8). Number of Ki-67-positive cells were

counted and plotted. HS was run as a control. *Po 0.05 (by paired t-test). (f) 3D-PCA plot showing global gene expression patterns between different

culture conditions (that is, no AS and no TMP, EGFþTMP, ASþTMP and T0 baseline) obtained from HNSCC tumour explants after 12 h. After initial

normalization of data analysis was performed compared with baseline. (g) Heat map analysis of the microarray data showing the genes related to

TAM (top) and angiogenesis (bottom). Tumours explants were cultured in TMP-coated plates with AS (ASþTMP, lane 2) or EGF (EGFþTMP, lane 3) or

in uncoated plates without AS (No TMP and no AS Control, lane 4) and transcriptomic pattern was compared with base line tumour (lane 1). Heat map

scale indicates the expression range. Clustering of genes was performed by k- means algorithm. Distance was measured by Euclidean distance metric.

(h) Venn diagram showing number of overlapped genes related to TAM and angiogenesis between the three culture conditions. (i) Validation of microarray

gene signature by qRT–PCR for TAM (left) and angiogenesis (right); selected genes from each signature was run in triplicates (technical replicates)

normalized to baseline expression (biological replicates) and compared between conditions as indicated in the scatter plot (n¼ 5).
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exhibited enhanced preservation of native tumour morphology
and proliferation status (Supplementary Fig. 7d). Taken together,
these results suggest that a number of phenotypic markers
characteristic of EMT, immune cells and cytokines as well as
cancer stem cell phenotypes are more consistently and collectively
better conserved in this platform compared with culture
conditions with either TMP or AS or EGF-supplemented TMP.

CANScript predicts response to cytotoxic and targeted drugs.
The conservation of patient tumour heterogeneity in the
CANScript tumour ecosystem prompted us to explore the
possibilities of using this as a preclinical tool to predict anticancer
drug response. To assess this, we first compared drug response in
human tumour-derived xenotransplants (HTX) and in matched
CANScripts explants (constructed from passage 2, that is,
P2-HTX). Primary HNSCC tissues were propagated in severe
combined immunodeficiency mice up to second passage
(P2-HTX). Since response and resistance to a particular drug
combination can be intrinsically controlled by deregulation at the
genetic and epigenetic levels,11,36–38 we first mapped the degree
to which a xenotransplanted tumour (at P2) conserves the
descriptors of the primary tumour. Interestingly, exome data
from three different primary samples, HNSCC-1, HNSCC-2 and
HNSCC-3, and their matched P2-HTX, showed that while the
overall events of mutation and translocation of primary tumours
were largely preserved when passaged in immunocompromised
mice, there were mutations that were unique to original parental
P0 and P2-HTX, respectively (Fig. 5a,b and Supplementary
Table 3). However, global transcriptome pattern showed a
good association between P0 and matched HTXs (Fig. 5c,d).

Furthermore, histopathological characterization of P2-HTX
revealed that the HTX successfully conserved key
morphological and molecular characteristics of original parental
(P0) tumours, including the expression of proliferation marker
(Ki-67), glucose transport (GLUT1), phospho-EGFR and
phospho-AKT (Fig. 5e). Subsequently, these extensively
characterized P2-HTX were used as surrogates for initial
functional validation of the CANScripts. HTX-derived
CANScripts were concurrently treated with the clinically
approved cytotoxic drug regimen of docetaxel, cisplatin and
5-fluorouracil (TPF), segregated into two groups of responders
and non-responders based on viability, ATP utilization,
proliferation status and loss of tumour area/nuclear
fragmentation (Fig. 6a–c and Supplementary Fig. 8a–c).
Interestingly, we noticed an excellent correlation between the
outcomes in the CANScript platform and the response to
chemotherapy in the HTX studies. For example, cases predicted
as responders using the CANScript tumour ecosystem mapped to
a significant inhibition of tumour growth when the animals were
treated at maximum tolerated dose daily for up to 21 days
(Fig. 6d). The results were further validated at the molecular level
by determining the end point changes in mean tumour area/
nuclear size in sections, Ki-67 and concomitant drug-induced
increase in apoptotic cells by staining with TUNEL method
(Fig. 6e,f). Similarly, cases predicted as non-responders using the
CANScript tumour ecosystem did not show any effect in HTX
system, as defined by the lack of any distinctions in Ki-67 and
active Caspase-3 expression between the treated and untreated
groups (Supplementary Fig. 8a–e).

The ex vivo to in vivo correlation in response to a general
cytotoxic drug combination that we observed in HNSCC samples
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Figure 5 | Comparative profiling of patient tumours and their corresponding xenografts. (a) Mutational and translocation spectrum obtained from the

whole-exome sequence analysis (Agilent 44Mb, � 50 coverage) of HNSCC patient tumours and also their corresponding xenograft tumour (passage

no.2) tissues. In representative Circos plots each dot represents a mutation and line represents translocation. Blue colour stands for original tumours, green

colour stands for overlapped original and xenografted tumours and red colour denotes the events in xenograft only. (b) Exome data table illustrates that the

HNSCC tumours when passaged in mice (P2) retain majority of genomic characteristics of the baseline tumour. (c) Unsupervised 2D hierarchical clustering

performed on colon samples shows that expressed genes in primary tumour (P0) are associated with HTX and stably expressed when passaged in mice

(P2). Scale represents expression ranges (fold normalized changes, bottom). (d) 3D-PCA plots generated by GeneSpring GX software to show the

clustering of samples of same origin and serial passage. The plot shows six distinct clusters comprising of four pairs of colon carcinoma and two pairs of

HNSCC samples. (e) Representative IHC images of early passages of HTXs and matched primary tumours. Primary HNSCC tissues (pregrafts) were

propagated up to passage 2 (post grafts) in SCID mice. Tumours from both pregrafts and post grafts were stained with anti–Ki–67 (right, top), antibodies
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encouraged us to further validate the predictive ability of
CANScript for targeted therapeutics. For this purpose we used
HTXs generated from HNSCCs harbouring wild-type or mutant
KRAS. Consistent with the results observed earlier with
cytotoxics, a positive response in the CANScript explants with
cetuximab (Fig. 6g–i) was mirrored by tumour inhibition in vivo
(Fig. 6j–l).The functional outcome was correlated with a decrease
in Ki-67 positivity, increased TUNEL and a reduction in

phospho-EGFR levels in both the CANScript explants and
in vivo (Fig. 6h,i,k,l and Supplementary Fig. 9a,b). We next
tested the effect of cetuximab in HTX and CANScript explants
generated from CRCs. As shown in Supplementary Fig. 10a–g, an
inhibitory outcome in the CANScript explants correlated with a
significant tumour growth inhibition in vivo, while in the absence
of an inhibitory effect in the tumour ecosystem (TE), minimal
tumour growth inhibition was evident in vivo (Supplementary
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by t-test. (b) Representative images show corresponding IHC profile. Tumour sections were stained with H&E (hematoxylin and eosin stain; top) and Ki-67

(bottom). Scale bar, 50mm. (c) Graph shows percent tumour area and Ki-67-positive cells from vehicle- and TPF- treated explants. Data shown are mean
±s.d. *Po0.05 by t-test (n¼ 3). (d) Graph shows in vivo tumour growth inhibition in xenografts following TPF treatment till 21 days of treatment. Data
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(e) Representative IHC images of pre- and post-treatment tumours stained with H&E stain (top), Ki-67 antibodies (middle) and TdT-mediated dUTP nick

end labeling (TUNEL; bottom). Scale bar, 100mm. (f) Graph shows quantitative analysis of IHC for tumour area, Ki-67þ cells and TUNELþ cells from

control and TPF treatment. Data are mean±s.d. of six mice per group. ***Po0.001 compared with vehicle control (paired t-test). (g) Cetuximab efficacy in

HSNCC CANScripts. Explants were treated with DMSO or cetuximab. Box plots represent percent inhibition of cell viability and ATP utilization (n¼ 20).

Horizontal line represents median and error bars indicate the interquartile range. **Po0.001 by t-test. (h) Representative images of tumour sections

labelled with H&E for morphology (top panel) and anti-Ki-67 antibodies for proliferation (bottom panel). Scale bar, 50 mm. (i) Graph shows quantification

of effects of treatment in the CANScripts in terms of percent tumour area and Ki-67-positive cells from control and cetuximab treatment. Data represented

as mean ±s.d. (n¼ 3). *Po0.001 by t-test. (j) Graph shows tumour growth inhibition in cetuximab-treated mice. Data are mean tumour volume±s.d.

n¼ 10. *Po0.02 and **Po0.001 (ANOVA) versus vehicle control. (k) Representative IHC reveals changes in H&E (top), Ki-67 (middle) and TUNEL

(bottom). Scale bar, 100mm. (l) Quantitative analysis of tumour area, Ki-67 and TUNEL from control and cetuximab-treated mice. All data indicate mean
±s.d. ***Po0.001 (t-test). n¼ 6. (m) The correlation observed between the efficacy data from TE explants and in vivo studies. R2 was calculated using

Spearman’s correlation coefficient method.
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Fig. 10h–n). In the cetuximab-treated groups, responders showed
a decrease in Ki-67 and phospho-ERK levels and increase in
cleaved caspase-3 expression (Supplementary Fig. 10b,c,e–g). This
was not evident in the non-responders (Supplementary
Fig. 10i,j,l–n). Collectively, we observed a linear correlation
(R2¼ 0.903, n¼ 26, by
Spearman’s correlation coefficient) between CANScript explants
outcomes and in vivo HTX responses (Fig. 6m).

CANScript as a tool to predict treatment outcome in patients.
The concordance in outcome between HTX in vivo and corre-
sponding CANScript studies suggested the possibility of using the
latter for predicting the treatment outcome in patients. The
CANScript explants were generated from biopsies of CRC and
HNSCC tumours from 109 patients and were incubated with the
same drug combination as that administered to the patient, that
is, docetaxel, cisplatin and 5-fluoro uracil (5-Fu) for the 70
HNSCC patients and cetuximabþ FOLFIRI for the 39 CRC
patients. The functional read-outs from these CANScripts,
quantified in terms of viability, histopathology, proliferation and
apoptosis, together with the observed clinical response in the
matched patients, classified as progressive disease/non-response
(NR), partial response (PR) or complete response (CR) based on
PERCIST guidelines (Fig. 7a), were then used as the training set
for a novel machine learning algorithm. In this algorithm, as the
first step, we classified patients as simply responders or non-
responders, with a focus on ensuring high sensitivity (true posi-
tive rate). This was formulated by maximizing the partial area
under the receiver operating characteristic (ROC) curve (partial
area under the curve (AUC)) up to an acceptable false positive
range (Fig. 7b). To this end, PR and CR were grouped together
into a responder (R) category and a linear prediction model was
learned using SVMpAUC, a recently proposed structural support
vector machine algorithm for optimizing partial AUC. The
learned model was designed to maximize partial AUC while
achieving at least 75% specificity (that is, at most 25% false
positive rate) on the training set, and assigned coefficients of
0.2977, 0.5562, 0.0073 and 0.1388 to the viability, histology,
proliferation and apoptosis read-outs, respectively, together with
a threshold of 19.1 (that is, cases assigned a weighted score419.1
by the learned model were predicted to be responders).The model
achieved 96.77% sensitivity on the training set (Fig. 7c). We then
tested the learned algorithm on a new test group of 55 patients,
consisting of 42 HNSCC and 13 CRC patients treated with the
same drugs as above, where the model achieved 91.67% specificity
and 100% sensitivity (Fig. 7d). In particular, no potential
responders (PR or CR patients) in the test set were predicted as
NR (Fig. 7d).

In the next step, the learned model was refined to classify the
predicted responders into partial and complete responders (PR
and CR), by selecting a threshold that maximized PR versus CR
prediction accuracy on the training set. Following this, scores
between 19.1 and 55.14 were classified as PR, and those 455.14
as CR. As can be seen in Fig. 7e,f, the coefficients assigned to the
four read-outs by the SVMpAUC-learned model, together with
the above thresholds, resulted in predictions that were signifi-
cantly better than what could be achieved by predicting using any
one of the functional read-outs alone. Confusion matrices
summarizing predictions in each category on both the training
and test sets are shown in Fig. 7g,h; break-ups among HNSCC
and CRC cases are shown in Fig. 7i–l. The resulting predictions
had 87.27% accuracy on the test set (Fig. 7h). In particular,
among the 55 test cases, there were only seven prediction errors:
four PRs were predicted as CR; one CR was predicted as PR; one
NR was predicted as PR; and one NR was predicted as CR

(Fig. 7h). This is the benefit of using the SVMpAUC machine
learning algorithm, which explicitly encourages high sensitivity in
the learned model (indeed, a standard support vector ordinal
regression algorithm which directly classified the patients into
one of the three categories yielded a lower accuracy of 81.82% on
the test set, making a total of 10 prediction errors on the 55 cases,
which included 1 PR case predicted as NR). Again, it is worth
emphasizing that these errors using the SVMpAUC machine
learning algorithm were all ‘benign’, in that no potential
responder (PR or CR) was predicted as a NR. While such
‘benign’ errors do mean unwarranted drug use that can result in
potential side effects, it also means that no patient who would
respond to chemotherapy is denied a drug based on a false
prediction. Indeed, current clinical practice also assumes this
principle, where the error rate is significantly higher as seen in
our study. For example, as shown in Fig. 7m, biomarker analysis
selected all 13 CRC patients in the test set, all of whom were
positive for wild-type KRAS, to receive cetuximab. However, as
can be seen, only 3 of these 13 wild-type KRAS patients actually
responded to the drug (1 exhibited CR and 2 exhibited PR), while
the remaining 10 presented with progressive disease. Interest-
ingly, the CANScript platform predicted two CRs, two PRs and
nine NRs, with only one actual NR case being wrongly predicted
as CR. As shown in Fig. 7n, based on standard practice, all 42
HNSCC patients in the test set received TPF. However, 14 of
these patients did not respond to the drug combination. The
CANScript platform could identify 13 of these as NRs. Again,
importantly, all patients predicted by the platform as NRs were
indeed NRs. It should be noted that 13 and 42 are small sample
sizes, and that larger-scale studies are needed in the future to
establish similar results on larger sample sizes; however based on
the observed improvements over the standard/biomarker-based
approach, we anticipate that the CANScript platform can emerge
as a powerful strategy for predicting chemotherapy outcomes.

Discussion
While biomarker driven personalized cancer therapy has emerged
as a powerful concept, the mere presence of a biomarker in a
cancer cell may not translate into clinical efficacy1,6,7,39. This
arises from heterogeneity, where multiple genetic, epigenetic and
phenotypic alterations along with immune and metabolic changes
represent a complex state of the neoplastic transformation40.
Indeed, in the current study, of the 52 patients who received
cetuximab based on wild-type KRAS status, only 1 exhibited CR
and 12 exhibited PR, and the remaining 39 presented with
progressive disease. While the use of more than one biomarkers,
for example, the use of wild-type KRAS and BRAF to select
patients eligible for cetuximab41 is the emerging trend, the ability
to predict chemotherapy outcomes accurately at an early time
point still remains a holy grail in the management of cancer. Here
we have demonstrated the development of a novel technology
platform that integrates a comprehensive explant culture with a
machine learning algorithm to better predict chemotherapy
outcomes. As we have demonstrated in this study, the
CANScript platform is versatile in its ability to predict the
outcomes of both cytotoxic chemotherapy regimens and targeted
therapeutics.

A key attribute of the CANScript platform is its ability to
capture the intratumoral heterogeneity to a greater degree than
achieved by biomarker-based selection of cancer cells. Cancer
stem cells, stromal cells such as intra and peritumoral immune
cells, and vascular components can further add to the hetero-
geneity and contribute towards tumour survival, progression and
metastasis15,17,34,42, suggesting that an explant culture that
globally conserves these distinct cellular components in their
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Figure 7 | Validation of CANScript platform using clinical data. (a) Positron emission tomography–computed tomography (PET–CT) for representative

cases of CR (left), PR (middle) and NR (right) as determined by PERCIST. Primary treatment-naı̈ve HNSCC patients underwent FDG–PET–CT scan

examination before (predose) and after three cycles of TPF treatment (post dose). Clinical response to the drugs for individual patients was evaluated

based on PERCISTdata. (b) ROC plot showing true positive rate (sensitivity) and false positive rate (one minus specificity); the shaded area represents the

partial area under the ROC curve up to false positive rate 0.25. The SVMpAUC algorithm used to learn a NR/R model to distinguish the non-responders

from responders maximized the partial area under the ROC curve up to false positive rate of 0.25 on the training set. This encourages learning a model with

high sensitivity, minimizing the number of potential responders (PR or CR patients) that are predicted to be NR while keeping specificity at least 75%.

(c) Performance of learned NR/R model on the training set. Confusion matrix displays the number of patients with various actual and predicted responses

to TPF for HNSCC and cetuximabþ FOLFIRI for CRC in the training set (n¼ 109). (d) Performance of learned NR/R model on the test set. Confusion

matrix displays the number of patients with various actual and predicted responses in the test set (n¼ 55). (e) Plots showing values of the functional read-

outs from the CANScripts (that is, viability, histology, proliferation and apoptosis), as well as scores assigned by the SVMpAUC-learned model to patients

in the training set, and (f) in the test set. (g) Performance of final refined NR/PR/CR prediction model on the training set. Confusion matrix displays the

number of patients with various actual and predicted responses to TPF for HNSCC and cetuximabþ FOLFIRI for CRC in the training set. (h) Performance of

final refined NR/PR/CR prediction model on the test set. Confusion matrix displays the number of patients with various actual and predicted responses in

the test set. (i,j,k and l) Performance of final refined NR/PR/CR prediction model on HNSCC cases alone in the training and test sets, and on CRC cases

alone in the training and test sets, respectively.(m) CANScript-based model is a better tool than biomarker- (KRAS) based prediction of response to

cetuximab and FOLFIRI in CRC. (n) CANScript-based model is a better tool than standard patient selection for response to TPF in HNSCC.
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original architecture, as evident in the CANScript platform,
is important for increasing the probability of predicting a
chemotherapy outcome. Indeed, anticancer drugs have been
reported to exert their effects by altering both cancer cells and
tumour microenvironment10,11,34,40.

Interestingly, short-term cultivation of primary explants of
human tumours had been explored previously, for example,
growing the specimens in plasma clots43 or using engineered 3D
explant cultures20,25,44–48. While these explant models did
capture the heterogenous cancer and stromal cell population to
certain degree, and were used to study tumour heterogeneity,
invasiveness and response to treatment15–17,21,25,49, these
attempts did not show full viability at diverse functional levels.
While extracellular matrix support was shown to help preserve
and recreate many important morphologic and phenotypic
properties in these 3D spheroids and organotypic cultures,
these studies did not elucidate the importance of conserving
tumour type- and grade-matched matrix factors in maintaining
functional organization and dynamics. Indeed, our results
indicate that the composition of TMPs is distinct between
tumour types and also between grades. Nor did these studies
recreate the oncogenic signalling networks encompassing the
activation of diverse RTK signalling with extensive heterogeneity
and cross-talks20,27,30,50–52. Importantly, our results with
mismatched matrix or HS controls indicate the criticality of a
matched tumour microenvironment together with AS in
preserving the phenotypic and molecular features of the native
tumour. It is evident from the RPPA profiling of key signalling
pathways and physiologically relevant growth factors detectable
in patient serum that extensive heterogeneity exists between
patients and that a truly personalized milieu with an active
balance of multiple parallel signalling cascades can therefore be
successfully created by AS53–57. It should, however, be noted that
while AS and TMP independently and collectively improved
explant culture quality, not all aspects are necessarily dependent
on dual presence of AS and TMP. For example, growth factor
dependent features are better sustained in presence of AS,
whereas TMP plays a dominant role in tumour heterogeneity and
at the phenotypic level in maintaining survival and proliferation.

The ability to predict outcomes is not only attractive from a
clinical perspective, but also has major implications on preclinical
cancer research, where the focus has been to develop assays that
can bridge the translational gap. While animal models have been
used as the front line in predicting efficacy, the predictive value of
these models is debatable, a consequence of using cell lines
cultured over years that are no longer representative of the
original tumour. Furthermore, transgenic murine models may
recapitulate a specific cancer pathway, but fail to capture the true
heterogeneity that is characteristic of human tumours. For
example, we observed in our study that while EGFR generally
plays a critical role in HNSCC, additional driver mechanisms
such EphB4, AKT, ERK1/2, Tie2, VEGFR2, cAbl, FGFR1, HER3
and IR are activated. Indeed, such stochastic heterogeneity has
been implicated in the induction of adaptive resistance. There is
therefore a resurgence in the use of early-passage patient-derived
xenografts for predicting clinical responses. Consistent with these
recent studies, we observed a good concordance in terms of
histopathology and gene expression between the tumour biopsy
(P0) and the 2ndpassage xenografts (P2-HTX). However, we did
observe unique mutations between the P0 biopsy and the
P2-HTX xenografts. It is possible that these differences between
P0 and P2-HTX arise due to intratumour heterogeneity at the
time of implantation50. In our study, the presence of fewer unique
P2-HTX mutations in HNSCC-1, a clinical responder, versus the
high number of unique P2-HTX mutations in HNSCC-2 and
HNSCC-3 tumours, clinically classified as partial and non-

responders, respectively, could indicate a propensity for the
acquisition of new mutations and/or rearrangements during
tumour propagation, consistent with the genetic instability.
Furthermore, the ‘take rate’ in the current studies was o50%,
consistent with published reports, which together with the long
time required to establish a graft has been a limiting factor for
translation of xenotransplant of primary models for predictive
studies58. The ex vivo to in vivo functional correlation data clearly
show the benefit of using CANScript technology as a surrogate of
animal modelling. In addition, the minimal amount of tissue
required to establish the CANScripts means multiple explants per
tumour biopsy, which allows us to better capture the impact of
intratumoral heterogeneity on outcome.

A powerful feature of the CANScript platform is its use of a
novel machine learning approach that is tailored to make accurate
predictions particularly for potential responders. Specifically, the
algorithm operates in two stages: it first employs the recently
proposed SVMpAUC-based learning algorithm to distinguish
between responders and non-responders in a way that maximizes
sensitivity (fraction of responders predicted as responders).
Indeed, the learned model in our case achieved 100% sensitivity
on the test set while keeping specificity in an acceptably high
range. In the second stage, the algorithm learns an additional
threshold to separate responder predictions into complete
responder and partial responder predictions. This approach was
found to be superior to the performance of a standard, widely
used support vector ordinal regression algorithm that directly
aims to make predictions in the three categories and does not
explicitly incorporate the need for high sensitivity. Interestingly,
studies have correlated complete pathological response to the
long-term progression-free survival59, while recent ongoing
clinical trials like adjuvant dynamic marker adjusted
personalized therapy trial (ADAPT) are using short-term
dynamic response prediction biomarkers like decrease in Ki-67
in clinical settings as surrogates for clinical outcome for tailoring
personalized treatment60, indicating that integrating multiple end
points into a single score as adopted in this model could make
response prediction more comprehensive. Combined together,
the comprehensive tumour ecosystem and the SVMpAUC-based
algorithm makes the CANScript platform a powerful predictive
tool that can be used across different tumour types and treatment
regimens, as is evident from the overall response rates observed in
HNSCC and CRC tumours to targeted and chemotherapy
regimens that was similar to clinical outcome observed in
previous studies6,61. Moreover, while for this study we have
focused on predicting the patient response to a single drug
regimen at a time, in the future, the approach can be extended to
predicting a rank order among different drug regimens based on
their likely outcomes, which could help in prioritizing different
treatments. Furthermore, the CANScript platform can afford
nearly high-throughput testing while capturing the patient
intratumoral heterogeneity at a global level with higher fidelity,
allowing predictions to be made within 7 days for truly
personalizing chemotherapy.

Methods
Collection of tumour samples and patient sera. Tumours samples were collected
by core biopsy at the beginning of treatment and at the time of surgical removal for
deserving patients (for patient detail see Supplementary Methods). For each patient
5–10ml of non-heparinized blood was collected at the time of first biopsy in
BD-Vacutainer tubes and serum was separated at 1,000g for 15min. All sera
samples were aliquoted and stored at � 80 �C for further use.

Isolation of extracellular matrix proteins. Surgically removed fresh tumour
tissues were dissected into small sections (B1–2mm3) and digested with dispase
(Stem cell Technologies Inc. ), and subsequently the cells were separated using
a sieve62. Decellularization process was verified by phase contrast microscopy,
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and further confirmed by 4,6-diamidino-2-phenylindole staining and DNA
quantification. Tissue slices suspended in dispase solution was incubated for 15min
at 48 �C. The tissues were homogenized in a high salt buffer solution containing
0.05M Tris pH 7.4, 3.4M sodium chloride, 4mM of EDTA, 2mM of
N-ethylmaleimide and protease (Roche.11836153001) and phosphatase inhibitors
(Sigma-aldrich, P0044 and P5726) using tissue homogenizer (Cole Parmer). The
homogenized mixture was centrifuged repeatedly three times at 7,000g for 15min
and the supernatant was discarded to retain the pellet. The pellet was incubated in
2M Urea buffer (0.15M sodium chloride and 0.05M Tris pH 7.4) and stirred for
1 h at 50 �C. The complex extracted proteins were solubilised in Urea buffer63. The
mixture was then finally centrifuged at 14,000g for 20min and resuspended in the
2M Urea buffer, aliquoted and stored at � 80 �C. In addition, extracted protein
samples were run at denaturing conditions in the presence of standard molecular
weight ladder. When the run was complete, the gel was transferred into a suitable
staining tray and fixed in a solution containing formaldehyde in a shaker for 2 h.
The gel was washed three times with 1� wash solution once in every 5min. The
gel was incubated with sensitizing solution containing sodium-thiosulphate for
2min with gentle shaking and visualized using silver staining.

Identification of TMP components by nano LCMS/MS. The protein mixture was
dissolved at the concentration of 1 mgml� 1 in 50mM ammonium bicarbonate
buffer. The pH of protein samples was adjusted to B8.5. The samples (50 ml) were
reduced with 10mM DTT at 56 �C for 45min, incubated at 95 �C for 5min
and then allowed to cool. Alkylation was carried out by using 55mM final con-
centration of iodoacetamide in the dark. Trypsin (13 ng ml� 1) was added at a ratio
of 1:30 and enzyme/sample mixture was mixed well. Tubes with sample were
placed into thermostat and incubated at 55 �C for 2 h and then 37 �C overnight.
Digested samples were subjected for SpeedVac at 30 �C for 2–3 h. 5% formic acid
was added for adjusting the pH to 3. The samples were either subjected directly to
MS analysis or stored at � 20 �C.

Sample was vacuum dried and reconstituted in 12 ml of 0.1% formic acid
containing 12.5 fmol ml� 1 bovine serum albumin (BSA) or b-gal. One micro liter
of this was injected on column. Hence, the area of BSA/ b-gal was used for
normalization. A separate Mascot run was performed with carboxymethylation as a
dynamic modification to obtain area of BSA or b-gal protein. Area of the respective
protein is normalized to the control area of respective sample. Reserpine (Sigma-
aldrich) was used as a working standard. Digested peptides were subjected to
analysis by injecting into nano LCMS/MS63. The instrument (STAR Elite, Q-TOF
LCMS, Applied Biosystems) was externally calibrated with standard compounds. In
brief, peptide mixtures were dissolved in 25 ml of sample preparation solution and
injected (10 ml pick up) into nano-LC through an auto-sampler system. Peptides
were eluted using nano-reverse phase column (Michrom C18 5 mm particle, 300 Å
pore size, 75mm ID, 150mm length) which was further connected to the Nano
Spray ESI-Q-TOF system (Qstar Elite, Applied Biosystems). A gradient of water
and Acetonitrile was set up for 60min with a flow rate of 400 nlmin� 1. Eluted
peptides from the column were ionized using ESI source with ion spray voltage
2250V and temperature 120 �C. Ionized peptides were analysed by one full MS
scan and four consecutive product ion scans of the four most intense peaks, using
rolling collision energy. An Information Dependant Acquisition (IDA) experiment
was used to specify the criteria for selecting each parent ion for fragmentation,
which included selection of ions in m/z range: 4400 and o1600, of charge state of
þ 2 to þ 5, exclusion of former target ions for 30 s, accumulation time of 1 s for a
full scan and 2 s for MS/MS. The data generated by the Analyst software were
stored in a.wiff format. The machine generated data files were analysed using
ProteinPilot version 4.0 software with a combined NCBI Human Database (release
45, containing 39125 non-redundant protein entries, 18.8Mb), Paragon Algorithm
and Proteome Discoverer1.3 software. All searches were performed with tryptic
specificity allowing two missed cleavages. Trypsin and keratin entries were retained
in the list generated. During the analysis, in the search parameters modification of
cysteine by idoacetamide and biological modifications programmed in algorithm
were allowed. Mass tolerance for precursor ion and fragment ions were set to
100 p.p.m. and 0.2 Da, respectively. In Paragon Algorithm, protein score was
calculated on the basis of percentage confidence level of the peptides identified.
Protein score of minimum 0.47 (fit incorrect rate is 0%) corresponding to a
confidence level 466% were used. To rule out false discoveries, we carried out a
False Discovery Rate (FDR) analysis64 using ProteinPilot 4.0 with Paragon
algorithm for data analysis. As part of the Paragon analysis method, a FDR analysis
of the results was carried out by the Proteomics Performance Evaluation Pipeline
Software (PSPEP). Finally, proteins were selected on the basis of their critical FDR
value, that is, 1%. To avoid identifications based on redundant peptides in our
proteome, we did not include proteins that have no unique peptide identifications.
Protein grouping function was disabled for generation of protein list. Proteins that
share some peptides as well as have unique peptide identifications were grouped
accordingly. Deeper annotations were done by accessing specific published
information.

For peptide and protein identification, peak lists were correlated with the
human protein database65–68. The rationale for spectral counting derived protein
abundance is that proteins in higher abundance result in more proteolytic peptides
detected by tandem MS and subsequently identified by database searching.
Following the matching of peptide peaks, peptide abundances in each of the

analysed gradient fractions were calculated from the area under the peak. All data
processing steps were manually inspected to ensure correct peak detection and
matching; overlapping peaks were discarded. Proteins were considered quantifiable
if they were represented in at least 75% of the clinical samples matching the cancer
type and grade. There are many inherent variables, like ionization efficiency,
sensitivity to digestion and interference at the time of elution might influence in the
determination of the relative abundance for a protein. In general the prediction
falls within a ratio of twofold compared with the actual one. Both sample
distance and protein feature distance were calculated using Pearson’s correlation
and average linkage was used for the clustering of both samples and protein
features.

Preparation, coating and detection of TMP mix. TMP cocktails were prepared,
based on the relative abundance of key components obtained from LCMS/MS
analysis of HNSCC and CRC patient tumour tissues using human proteins as
shown in Supplementary Figs 2 and 3. Sterile culture wells were freshly coated
with TMP cocktails (100 mgml� 1) unless mentioned otherwise. To visualize the
coat, the matrix was incubated with anti-Collagen1 antibody at a dilution of 1:50
(rabbit polyclonal, Abcam. ab34710) for 1 h at room temperature. After four
washes in PBS, slides were incubated with Alexa Fluor 555 (anti-mouse, Cell
Signaling Technology.4409) for additional 45min at room temperature in dark.
Slides were washed with PBS and finally mounted with Vecta-Shield DAPI (Vector
laboratories. H-1200) to confirm the absence of nuclear contamination in premixed
TMP cocktail. Images were visualized under immunofluorescence microscopy
setting using red and blue filters (DM4000, Leica Microsystems) and images were
captured with DFC 425C (Leica) camera.

Surface scanning electron microscopy. Electron microscope compatible cover
slips (Thermanox, Ted Pella Inc.) were coated with freshly prepared TMP cocktails
(100 mgml1) for 4 h, washed twice and were fixed in 10% buffered formalin for
10min (to resist metal coating and high electron beam), washed in PBS and
dehydrated with 70 and 100% ethanol for 5min each. Immediately before imaging,
the slides were coated with gold and the images were captured using a Cambridge
scanning electron microscope with EDAX attachment.

Human tumour explant culture. Tumour tissues were sectioned into B300 mm
slices using McIlwain tissue chopper (TedPella). These tumour sections were
randomized and cultured in 48-well flat bottom plates coated with stage and
grade-matched TMP with RPMI medium supplemented with 2% AS, 8% FBS
(Life Technologies. 10270-106), 1� Insulin-Transferrin-Selenium (ITS, Life
Technologies. 41400-045), 1� GlutaMAX (Life Technologies. 35050-061) and
1� penicillin, streptomycin and amphotericin B (Life Technologies. 15140-122).
Tumour slices (n¼ 3) were treated with either anti-EGF neutralizing antibody
(rabbit monoclonal, clone D8A1, Cell Signaling Technology. 12157) or with TPF
(for HNSCC) or with cetuximabþ FOLFIRI (for CRC) or with dimethylsulphoxide
(DMSO; vehicle control) for 72 h. The final concentration of DMSO was kept
Z0.01%. Media with drugs were changed every 24-h interval. A portion of each
tumour slice was used for cell viability (assessed by WST) and remaining tumours
were fixed in 10% buffered formalin and embedded in paraffin. The paraffin-
embedded tumours were used for histological (hematoxylin and eosin stain) and
IHC analysis including proliferation and cell death.

Human tumour xenografts. Freshly isolated primary human tumours were
washed in normal saline and cut into a small pieces (B5mm3) and implanted
subcutaneously onto the flanks (both sides) in immune compromised 5–6 weeks
old, female severe combined immunodeficiency (C.B-17/IcrHsd-PrkdcscidLystbg,
Harlan) mice. Tumour bearing mice (at the time of commencement of treatment
maximum tumour size was restricted to 100–150mm3) were treated with vehicle
(0.9% normal saline;) or concurrent regimen of TPF (cisplatin 2.5mg kg� 1 body
weight, docetaxel 20mg kg� 1 and 5Fu 50mg kg� 1) or single agent cetuximab
(4mg kg� 1) for 3–4 weeks. Tumour volume was calculated using the following
formula, Tumour volume (mm3)¼ (p/6) LWH; where L¼ length (mm),
W¼width (mm) and H¼ height (mm). All mice studies and experimental
protocols were approved by the institutional animal ethics committee.

Gene expression, exome and mutational analysis. See Supplementary Methods
for details. The data are publically available at Gene Expression Omnibus through
GEO series accession number GSE63544 and GSE63545; Biosample accession
numbers, SAMN03271711, SAMN03271712 and SAMN03271713.

Machine learning algorithm. We learned a model for predicting patient responses
as NR/PR/CR in two stages. At the first stage, PR and CR labels were grouped
together into a single responder (R) category, and the recently proposed
SVMpAUC algorithm69 was trained on the training set of 109 patients to learn a
model to assign the scores and predict NR/R for new test cases. Specifically, given a
training set containing n examples (xi,yi), i¼ 1,...,n (here n¼ 109), where xi is a
feature vector containing the four functional read-outs for the i-th patient and yi is
1 if the i-th patient is a responder and � 1 otherwise, the SVMpAUC algorithm
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learns a weight vector w maximizing (a concave lower bound on) the partial area
under the ROC curve (partial AUC) up to a specified false positive rate b (here
b¼ 0.25), defined as follows70

pAUC ðwÞ ¼
X

i:yi¼1

X

j:yj¼� 1

1ðw � xi4w � xjÞ � 1ðj 2 SbÞ

Where Sb contains indices j of the top b fraction of non-responders in the
training set, ranked according to scores w.xj. This produced a weight vector w
assigning coefficients of 0.2977, 0.5562, 0.0073 and 0.1388 to the viability,
histology, proliferation and apoptosis read-outs, respectively. Together with a
threshold of 19.1 corresponding to (approximately) b¼ 0.25 false positive rate on
the training set, this yielded an initial NR/R prediction model. In the second stage,
the above model was further refined to classify the predicted responders as PR and
CR; this was done by selecting a threshold (55.14) that maximized PR/CR
classification accuracy on the training set.

Statistical analysis. One way analysis of variance and Student’s t-test, linear
regression and Spearman coefficient of correlation was analysed using GraphPad
Prism version 5 for Windows, GraphPad Software.
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